N9020B MXA X-Series Signal Analyzer, Multi-touch

10 Hz to 3.6, 8.4, 13.6, 26.5, 32, 44, or 50 GHz

Table of Contents

Definitions and Conditions	3
Frequency and Time Specifications	۷
Amplitude Accuracy and Range Specifications	6
Dynamic Range Specifications	S
PowerSuite Measurement Specifications	13
General Specifications	14
Inputs and Outputs	15
IQ Analyzer	17
IQ Analyzer — Option B40	18
IQ Analyzer - Option B85/B1A/B1X	19
Real-Time Spectrum Analyzer (RTSA)	20

Quickly adapt to evolving test requirements

Every device demands decisions that require tradeoffs in your goals—customer specs, throughput, yield. With a highly flexible signal analyzer, you can manage and minimize those tradeoffs. Keysight Technologies Inc.'s mid-performance MXA is the optimum choice for wireless as you take new-generation devices to market. It has the flexibility to quickly adapt to evolving test requirements, today and tomorrow.

This data sheet is a summary of the specifications and conditions for MXA signal analyzers. For the complete specifications guide, visit: www.keysight.com/find/mxa_specifications

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature range of 0 to 55 °C, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. $2\,\sigma$) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies < 10 MHz, with DC coupling applied
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on; if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from "Time and Temperature" to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances

Get More Information

This MXA signal analyzer data sheet is a summary of the specifications and conditions for N9020B MXA signal analyzers. A full set of specifications are available in the MXA Signal Analyzer Specification Guide at www.keysight.com/find/mxa specifications.

For ordering information, refer to the N9020B MXA Signal Analyzer Configuration Guide (literature number 5992-1256EN).

Frequency and Time Specifications

DC coupled	AC coupled	
10 Hz to 3.6 GHz	10 MHz to 3.6 GHz	
	10 MHz to 8.4 GHz	
	10 MHz to 13.6 GHz	
	10 MHz to 26.5 GHz	
	NA	
	NA	
	NA NA	
10 112 to 30 di 12	14/1	
10 Hz to 3 6 GHz		
34.4 to 50 GHZ		
F/r: 1 1 1 1		
	stment x aging rate) + temperature stability + calibration accuracy]	
	Standard	
	± 1 x 10 ⁻⁶ / year	
	Standard	
	$\pm 2 \times 10^{-6}$	
	± 2 x 10 ⁻⁶	
	Standard	
	± 1.4 x 10 ⁻⁶	
•	$0^{-8} + 4 \times 10^{-8}$	
$= \pm 1.9 \times 10^{-7}$		
≤ (0.25 Hz x N) p-p in 2	0 ms, nominal	
≤ (10 Hz x N) p-p in 20	ms, nominal	
See band table above f	or N (LO multiple)	
er)		
	Hz + 0.5 x horizontal resolution ¹)	
,		
± (marker frequency x f	requency reference accuracy + 0.100 Hz)	
± (delta frequency x frequency reference accuracy + 0.141 Hz)		
0 Hz (zero span), 10 Hz to maximum frequency of instrument		
· · · · · · · · · · · · · · · · · · ·		
·		
2 Hz		
·	zontal resolution)	
,	10 Hz to 8.4 GHz 10 Hz to 13.6 GHz 10 Hz to 26.5 GHz 10 Hz to 32 GHz 10 Hz to 44 GHz 10 Hz to 50 GHz 10 Hz to 50 GHz 10 Hz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz ± [(time since last adjustory option PFR ± 1 x 10 ⁻⁷ / year ± 1.5 x 10 ⁻⁸ ± 5 x 10 ⁻⁸ ± 5 x 10 ⁻⁸ Option PFR ± 4 x 10 ⁻⁸ 1.5 x 10 ⁻⁷ ≤ (0.25 Hz x N) p-p in 20 in See band table above form) 25 % x span + 5 % x RBW + 2 ± (marker frequency x frequency	

^{1.} Horizontal resolution is span/(sweep points - 1).

Frequency and Time Specifications (continued)

Sweep time and triggering		
Range	Span = 0 Hz Span ≥ 10 Hz	$1~\mu s$ to $6000~s$ $1~ms$ to $4000~s$
Accuracy	Span ≥ 10 Hz, swept Span ≥ 10 Hz, FFT Span = 0 Hz	± 0.01 %, nominal ± 40 %, nominal ± 0.01 %, nominal
Trigger	Free run, line, video, external 1, exter	rnal 2, RF burst, periodic timer
Trigger delay	Span = 0 Hz or FFT Span ≥ 10 Hz, swept Resolution	-150 to +500 ms 0 to 500 ms 0.1 μs
Time gating		
 Gate methods Gate length range (except method = FFT) Gate delay range Gate delay jitter 	Gated LO; gated video; gated FFT 100.0 ns to 5.0 s 0 to 100.0 s 33.3 ns p-p, nominal	
Sweep (trace) point range		
All spans	1 to 100,001	
Resolution bandwidth (RBW)		
Range (-3.01 dB bandwidth) - Standard - With Option B85 or B1A, and Option RBE - With Option B1X and Option RBE		MHz MHz, in Spectrum Analyzer mode and zero span , 100, and 133 MHz, in Spectrum Analyzer mode and zero span
Bandwidth accuracy (power)	1 Hz to 750 kHz 820 kHz to 1.2 MHz (< 3.6 GHz CF) 1.3 to 2 MHz (< 3.6 GHz CF) 2.2 to 3 MHz (< 3.6 GHz CF) 4 to 8 MHz (< 3.6 GHz CF)	± 1.0 % (± 0.044 dB) ± 2.0 % (± 0.088 dB) ± 0.07 dB, nominal ± 0.15 dB, nominal ± 0.25 dB, nominal
Bandwidth accuracy (-3.01 dB)		
- RBW range	1 Hz to 1.3 MHz	± 2 %, nominal
Selectivity (-60 dB/-3 dB)	4.1:1, nominal	
EMI bandwidth (CISPR compliant)	200 Hz, 9 kHz, 120 kHz, 1 MHz	(Option EMC required)
EMI bandwidth (MIL STD 461E compliant)	10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz (standard)	(Option EMC required)
Analysis bandwidth ¹		
Analysis bandwidth Maximum bandwidth	Option B1X Option B1A Option B85 Option B40 Option B25 (standard)	160 MHz 125 MHz 85 MHz 40 MHz 25 MHz
•	Option B1A Option B85 Option B40	125 MHz 85 MHz 40 MHz
Maximum bandwidth	Option B1A Option B85 Option B40 Option B25 (standard)	125 MHz 85 MHz 40 MHz

^{1.} Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

Amplitude Accuracy and Range Specifications

Amplitude range					
Measurement range					
Preamp Off	Displayed average noise leve	Displayed average noise level (DANL) to +30 dBm			
Preamp On	Displayed average noise leve	el (DANL) to +30 dBm			
Input attenuator range	0 to 70 dB in 2 dB steps				
Electronic attenuator (Option EA3)				
Frequency range	10 Hz to 3.6 GHz				
Attenuation range - Electronic attenuator range - Full attenuation range (mechanical + electronic)	0 to 24 dB, 1 dB steps 0 to 94 dB, 1 dB steps				
Maximum safe input level					
Average total power (with and without preamp)	+30 dBm (1 W)				
Peak pulse power	< 10 μs pulse width, < 1 % d	uty cycle +50 dBm (100 W) ar	nd input attenuation ≥ 30 dB		
DC volts - DC coupled - AC coupled	± 0.2 Vdc ± 100 Vdc				
Display range					
Log scale	0.1 to 1 dB/division in 0.1 dB 1 to 20 dB/division in 1 dB s				
Linear scale	10 divisions				
Scale units	dBm, dBmV, dBμV, dBmA, dl	ΒμΑ, V, W, A			
Frequency response		Specification	95th percentile (≈ 2♂)		
(10 dB input attenuation, 20 to 30 $^{\circ}$	C, preselector centering applied	, σ = nominal standard deviat	ion)		
RF/MW (Option 503, 508, 513, 526)	20 Hz to 10 MHz 10 MHz ¹ to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 22.0 GHz 22.0 to 26.5 GHz	± 0.6 dB ± 0.45 dB ± 1.5 dB ± 2.0 dB ± 2.0 dB ± 2.5 dB	± 0.28 dB ± 0.17 dB ± 0.48 dB ± 0.47 dB ± 0.52 dB ± 0.71 dB		
Millimeter-Wave (Option 532, 544, 550)	20 Hz to 10 MHz 10 to 50 MHz 50 MHz to 3.6 GHz 3.5 to 5.2 GHz 5.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	± 0.6 dB ± 0.45 dB ± 0.45 dB ± 1.7 dB ± 1.5 dB ± 2.0 dB ± 2.0 dB ± 2.0 dB ± 2.5 dB ± 2.5 dB ± 3.2 dB	± 0.28 dB ± 0.21 dB ± 0.2 dB ± 0.67 dB ± 0.47 dB ± 0.47 dB ± 0.52 dB ± 0.66 dB ± 0.79 dB ± 1.07 dB ± 1.4 dB		

^{1.} DC coupling required to meet specifications below 50 MHz. With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Amplitude Accuracy and Range Specifications (continued)

Preamp on (0 dB attenuation) (Optio	n P03, P08, P13, P26, P32, P44, P	50)	
RF/MW	100 kHz to 3.6 GHz	± 0.75 dB	± 0.28 dB
(Option 503, 508, 513, 526)	3.5 to 8.4 GHz	± 2.0 dB	± 0.67 dB
	8.3 to 13.6 GHz	± 2.3 dB	± 0.73 dB
	13.5 to 17.1 GHz	± 2.5 dB	± 0.97 dB
	17.0 to 22.0 GHz	± 2.8 dB	± 1.36 dB
	22.0 to 26.5 GHz	± 3.5 dB	± 1.48 dB
Millimeter-Wave	100 kHz to 3.6 GHz	± 0.75 dB	± 0.28 dB
(Option 532, 544, 550)	3.5 to 5.2 GHz	± 2.0 dB	± 0.67 dB
	5.2 to 8.4 GHz	± 2.0 dB	± 0.51 dB
	8.3 to 13.6 GHz	± 2.3 dB	± 0.73 dB
	13.5 to 17.1 GHz	± 2.5 dB	± 0.97 dB
	17.0 to 22.0 GHz	± 2.8 dB	± 1.36 dB
	22.0 to 26.5 GHz	± 3.5 dB	± 1.48 dB
	26.4 to 34.5 GHz	± 3.0 dB	± 1.48 dB
	34.4 to 50 GHz	± 4.1 dB	± 1.69 dB
Input attenuation switching uncerta	inty	Specifications	Additional information
Attenuation > 2 dB, preamp off	50 MHz (reference frequency)	± 0.20 dB	± 0.08 dB, typical
Relative to 10 dB (reference setting)	20 Hz to 3.6 GHz		± 0.3 dB, nominal
-	3.5 to 8.4 GHz		± 0.5 dB, nominal
	8.3 to 13.6 GHz		± 0.7 dB, nominal
	13.5 to 26.5 GHz		± 0.7 dB, nominal
	26.4 to 50 GHz		± 1.0 dB, nominal

Amplitude Accuracy and Range Specifications (continued)

Total absolute amplitude accuracy		Specifications	
(10 dB attenuation, 20 to 30 °C, 1 Hz ≤ RBW ≤ 1 MHz	z, input signal –10 to –50 dBm, all settir	•	
Auto Swp Time = Accy, any reference level, any scale	$e, \sigma =$ nominal standard deviation)		
	At 50 MHz	± 0.33 dB	
	At all frequencies	± (0.33 dB + frequency response)	
	20 Hz to 3.6 GHz	± 0.23 dB (95th Percentile ≈ 2 o)	
Preamp on (Option P03, P08, P13, P26, P32, P44 and P50)	At all frequencies	± (0.39 dB + frequency response)
Input voltage standing wave ratio (VSWR) (≥ 10 dB	input attenuation)	95th F	Percentile
		Freq Opt 503, 508, 513, 526	Freq Opt 532, 544, 550
	10 MHz to 3.6 GHz	1.142	1.147
	3.5 to 8.4 GHz	1.33	1.221
	8.3 to 13.6 GHz	1.48	1.276
	13.5 to 17.1 GHz	1.46	1.285
	17.0 to 26.5 GHz	1.55	1.430
	26.4 to 34.5 GHz	NA	1.424
	34.4 to 50 GHz	NA	1.533
Preamp on	10 MHz to 3.6 GHz	1.80	1.450
(0 dB attenuation)	3.5 to 8.4 GHz	1.68	1.522
	8.3 to 13.6 GHz	1.69	1.430
	13.5 to 17.1 GHz	1.66	1.432
	17.0 to 26.5 GHz	1.66	1.562
	26.4 to 34.5 GHz	NA	1.375
	34.4 to 50 GHz	NA	1.483
Resolution bandwidth switching uncertainty (refer	enced to 30 kHz RBW)		
1 Hz to 1.5 MHz RBW	± 0.05 dB		
1.6 MHz to 3 MHz RBW	± 0.10 dB		
4, 5, 6, 8 MHz RBW	± 1.0 dB		
Reference level			
Range			
- Log scale	-170 to +30 dBm in 0.01 dB steps		
Linear scale	Same as Log (707 pV to 7.07 V)		
Accuracy	0 dB		
Display scale switching uncertainty			
Switching between linear and log	0 dB		
	0 dB		
Log scale/div switching	U UD		
Display scale fidelity	. 0.10 - ID + - + - I		
Between -10 dBm and -80 dBm input mixer level	± 0.10 dB total		
Trace detectors	2110		
Normal, peak, sample, negative peak, log power ave	rage, RMS average, and voltage averag	9	
Preamplifier			
Frequency range	Option P03	100 kHz to 3.6 GHz	
	Option P08	100 kHz to 8.4 GHz	
	Option P13	100 kHz to 13.6 GHz	
	Option P26	100 kHz to 26.5 GHz	
	Option P32	100 kHz to 32 GHz	
	Option P44	100 kHz to 44 GHz	
	Option P50	100 kHz to 50 GHz	
Gain	100 kHz to 3.6 GHz	+20 dB, nominal	
	3.6 to 26.5 GHz	+35 dB, nominal	
	26.5 to 50 GHz	+40 dB, nominal	
Noise figure	100 kHz to 3.6 GHz	11 dB, nominal	
	3.6 to 8.4 GHz	9 dB, nominal	
	8.4 to 13.6 GHz	10 dB, nominal	
	13.6 to 50 GHz	DANL + 176.24 dB, nominal	

Dynamic Range Specifications

1 dB gain compression (two-tone)		Total power at ir	nout mixer
g	20 to 500 MHz	0 dBm	+3 dBm, typical
	500 MHz to 3.6 GHz	1 dBm	+5 dBm, typical
	3.6 to 26.5 GHz	0 dBm	+4 dBm, typical
			0 dBm, nominal
	26.5 to 50 GHz	0 dBm	
Preamp on	10 MHz to 3.6 GHz		–14 dBm, nominal
(Option P03, P08, P13, P26, P32, P44, P50)	3.6 to 26.5 GHz	U- +- 00 MU-	00 40
	- Tone spacing 100 kl		-26 dBm, nominal
	 Tone spacing > 70 N Freq Option ≤ 526 	/IHZ	16 dDm naminal
			-16 dBm, nominal
	Freq Option > 526		-20 dBm, nominal
5	26.5 to 50 GHz		-30 dBm, nominal
Displayed average noise level (DANL)			
(Input terminated, sample or average detector	, averaging type = Log, 0 dB		
		Specification	Typical
RF/MW	10 Hz		–95 dBm, nominal
(Option 503, 508, 513, 526)	20 Hz		–105 dBm, nominal
	100 Hz		–110 dBm, nominal
	1 kHz		-120 dBm, nominal
	9 kHz to 1 MHz		–130 dBm
	1 to 10 MHz	–150 dBm	–153 dBm
	10 MHz to 2.1 GHz	–151 dBm	–154 dBm
	2.1 to 3.6 GHz	-149 dBm	–152 dBm
	3.6 to 8.4 GHz	-149 dBm	–153 dBm
	8.3 to 13.6 GHz	-148 dBm	–151 dBm
	13.5 to 17.1 GHz	–144 dBm	–147 dBm
	17.0 to 20.0 GHz	–143 dBm	-146 dBm
	20.0 to 26.5 GHz	–136 dBm	-142 dBm
Preamp on, RF/MW	100 kHz to 1 MHz		-149 dBm, nominal
(Option 503, 508, 513, 526)	1 to 10 MHz	-161 dBm	–163 dBm
(10 MHz to 2.1 GHz	-163 dBm	-166 dBm
	2.1 to 3.6 GHz	-162 dBm	-164 dBm
	3.6 to 8.4 GHz	-162 dBm	–166 dBm
	8.3 to 13.6 GHz	-162 dBm	–165 dBm
	13.5 to 17.1 GHz	-159 dBm	-163 dBm
	17.0 to 20.0 GHz	–157 dBm	–161 dBm
	20.0 to 26.5 GHz	–152 dBm	-157 dBm
Millimeter-Wave	10 Hz		-95 dBm, nominal
(Option 532, 544, 550) ¹	20 Hz		–105 dBm, nominal
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	100 Hz		–110 dBm, nominal
	1 kHz		–120 dBm, nominal
	9 kHz to 1 MHz		–135 dBm
	1 MHz to 1.2 GHz	–154 dBm	-155 dBm
	1.2 to 2.1 GHz	–152 dBm	-154 dBm
	2.1 to 3.6 GHz	–150 dBm	–152 dBm
	3.5 to 4.2 GHz	–144 dBm	-147 dBm
	4.2 to 6.6 GHz	–146 dBm	-149 dBm
	6.6 to 8.4 GHz	–148 dBm	-150 dBm
	8.3 to 13.6 GHz	–148 dBm	–150 dBm
	13.5 to 20 GHz	–145 dBm	–148 dBm
	20 to 26.5 GHz	–143 dBm	-145 dBm
	26.4 to 34 GHz	–142 dBm –140 dBm	-144 dBm
	33.9 to 40 GHz	–140 dBiii –136 dBm	-144 dBiii -140 dBm
	40 to 44 GHz	–135 dBm	–140 dBm
	40 to 44 GHz	–135 dBiii –135 dBm	–140 dBm
	46 to 50 GHz	–133 dBm	–137 dBm

^{1.} Without Option B40, B85, B1A, B1X, DP2, or MPB. When any of these options are installed, performance may change. Please refer to the MXA specifications guide for more details.

Dynamic Range Specifications (continued)

Preamp on, Millimeter-Wave	100 kHz to 1 MHz	–149 dBm	–151 dBm	
(Option 532, 544, 550)	1 to 10 MHz	-163 dBm	–165 dBm	
	10 MHz to 1.2 GHz	–164 dBm	–166 dBm	
	1.2 to 2.1 GHz	–163 dBm	–165 dBm	
	2.1 to 3.6 GHz	–162 dBm	–164 dBm	
	3.5 to 7 GHz	–161 dBm	–162 dBm	
	7 to 20 GHz	–161 dBm	–162 dBm	
	20 to 26.5 GHz	–159 dBm	–161 dBm	
	26.4 to 32 GHz	–158 dBm	–160 dBm	
	32 to 34 GHz	–156 dBm	–159 dBm	
	33.9 to 40 GHz	–154 dBm	–157 dBm	
	40 to 44 GHz	–150 dBm	–155 dBm	
	44 to 46 GHz	–150 dBm	–155 dBm	
	46 to 50 GHz	–150 dBm	–153 dBm	

DANL with Noise Floor Extension (Option NF2) improvement

DANL improvement exceeds 9 dB with 95% confidence in the average of all bands, paths (normal, preamp, low noise path and microwave preselector bypass), frequency options and signal path option (MPB).

DANL with Noise Floor Extension (Option RF/MW (Option 503, 508, 513, 526)	NF2) on		95t	h percentile
Frequency			Preamp Off	Preamp On
Band 0, f > 20 MHz			–162 dBm	–172 dBm
Band 1			–160 dBm	–170 dBm
Band 2			–160 dBm	–170 dBm
Band 3			–156 dBm	–170 dBm
Band 4			–148 dBm	–164 dBm
Millimeter-Wave (Option 532, 544, 550) ¹				
Band 0, f > 20 MHz			–163 dBm	–174 dBm
Band 1			–160 dBm	–172 dBm
Band 2			–161 dBm	–173 dBm
Band 3			–161 dBm	–174 dBm
Band 4			–158 dBm	–171 dBm
Band 5			–157 dBm	-169 dBm
Band 6			–152 dBm	–165 dBm
Spurious responses				
Residual responses (Input terminated and 0 dB attenuation)	200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies	-100 dBm -100 dBm, nominal		
Image responses	10 MHz to 3.6 GHz 3.5 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22 GHz 22 to 26.5 GHz 26.5 to 34.5 GHz 34.4 to 44 GHz 44 to 50 GHz	-80 dBc (-108 dBc, typical) -78 dBc (-87 dBc, typical) -74 dBc (-85 dBc, typical) -70 dBc (-81 dBc, typical) -68 dBc (-77 dBc, typical) -70 dBc (-94 dBc, typical) -60 dBc (-79 dBc, typical) -75 dBc, nominal		
LO related spurious (f > 600 MHz from carrier)	10 MHz to 3.6 GHz	–90 dBc, typical		
Other spurious f ≥ 10 MHz from carrier	-80 dBc + 20xlogN ²			

^{1.} Without Option B40, B85, B1A, B1X, DP2, or MPB. When any of these options are installed, performance may change. Please refer to the MXA specifications guide for more details.

^{2.} N is the LO multiplication factor.

Dynamic Range Specifications (continued)

Second harmonic distortion (SHI)				
	Source frequency	Mixer level	Distortion	SHI
RF/MW (Option 503, 508, 513, 526)	10 MHz to 1.0 GHz	–15 dBm	-60 dBc	+45 dBm
	1.0 to 1.8 GHz	–15 dBm	-56 dBc	+41 dBm
	1.75 to 6.5 GHz	–15 dBm	-80 dBc	+65 dBm
	6.5 to 11 GHz	–15 dBm	-70 dBc	+55 dBm
	11 to 13.25 GHz	–15 dBm	-65 dBc	+50 dBm
Millimeter-Wave (Option 532, 544, 550)	10 MHz to 1.0 GHz	–15 dBm	-60 dBc	+45 dBm
	1.0 to 1.8 GHz	–15 dBm	-56 dBc	+41 dBm
	1.75 to 3 GHz	–15 dBm	-72 dBc	+57 dBm
	3 to 6.5 GHz	–15 dBm	-80 dBc	+65 dBm
	6.5 to 11 GHz	–15 dBm	-70 dBc	+55 dBm
	11 to 13.25 GHz	–15 dBm	-65 dBc	+50 dBm
	13.2 to 25 GHz	–15 dBm	-65 dBc, nominal	+50 dBm, nominal
		Preamp level	Distortion	SHI
Preamp on (Option P03, P08, P13, P26, P32, P44, P50)	10 MHz to 1.8 GHz 1.8 to 13.25 GHz 13.25 to 25 GHz	–45 dBm –50 dBm –50 dBm	-78 dBc, nominal -60 dBc, nominal -50 dBc, nominal	+33 dBm, nominal +10 dBm, nominal 0 dBm, nominal

Third-order intermodulation distortion (TOI)

(Two –18 dBm tones at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to 30 °C, see Specifications Guide for IF prefilter bandwidths)

·	·			
		Distortion	TOI	TOI (typical)
RF/MW	10 to 100 MHz	-84 dBc	+12 dBm	+17 dBm
(Option 503, 508, 513, 526)	100 to 400 MHz	-90 dBc	+15 dBm	+20 dBm
	400 MHz to 1.7 GHz	-92 dBc	+16 dBm	+20 dBm
	1.7 to 3.6 GHz	-92 dBc	+16 dBm	+19 dBm
	3.6 to 26.5 GHz	-90 dBc	+15 dBm	+18 dBm
Millimeter-Wave	10 to 100 MHz	-88 dBc	+14 dBm	+17 dBm
(Option 532, 544, 550)	100 MHz to 3.95 GHz	-92 dBc	+16 dBm	+19 dBm
	3.95 to 8.4 GHz	-90 dBc	+15 dBm	+18 dBm
	8.3 to 13.6 GHz	-90 dBc	+15 dBm	+21 dBm
	13.5 to 17.1 GHz	-84 dBc	+12 dBm	+16 dBm
	17 to 26.5 GHz	-82 dBc	+11 dBm	+17 dBm
	26.4 to 34.5 GHz	-82 dBc	+11 dBm	+18 dBm
	34.4 to 50 GHz	-80 dBc	+10 dBm	+18 dBm, nominal
Preamp on, RF/MW				
(Tones at preamp input)				
two –45 dBm	10 MHz to 500 MHz	-98 dBc, nominal		+4 dBm, nominal
two –45 dBm	500 MHz to 3.6 GHz	-100 dBc, nominal		+5 dBm, nominal
two -50 dBm	3.6 to 26.5 GHz	-70 dBc, nominal		-15 dBm, nominal
Preamp on, Millimeter-Wave				
(Tones at preamp input)				
two -45 dBm	10 MHz to 3.6 GHz	-90 dBc, nominal		0 dBm, nominal
two -50 dBm	3.6 to 26.5 GHz	- 64 dBc, nominal		-18 dBm, nominal

Phase noise ¹	Offset	Specification	Typical
Noise sidebands	10 Hz		-80 dBc/Hz, nominal
(20 to 30 °C, CF = 1 GHz)	100 Hz	-91 dBc/Hz	-100 dBc/Hz
	1 kHz		-112 dBc/Hz, nominal
	10 kHz	-113 dBc/Hz	-114 dBc/Hz
	100 kHz	-116 dBc/Hz	-117 dBc/Hz
	1 MHz	-135 dBc/Hz	-136 dBc/Hz
	10 MHz		-148 dBc/Hz, nominal

^{1.} For nominal values at other center frequencies, refer to Figure 1 and Figure 2.

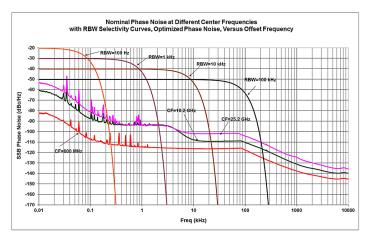


Figure 1. Nominal phase noise at different center frequencies, RF/MW(Option 503, 508, 513, 526)

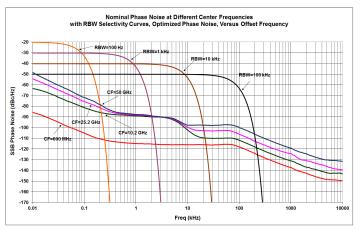


Figure 2. Nominal phase noise at different center frequencies, Millimeter-Wave (Option 532, 544, 550)

PowerSuite Measurement Specifications

Channel power			
Amplitude accuracy, W-CDMA or IS95	± 0.82 dB (± 0.23 dB 95th perce	entile)	
(20 to 30 °C, attenuation = 10 dB)	2 0.02 dB (2 0.20 dB 00th poroundto)		
Occupied bandwidth			
Frequency accuracy	± [span/1000] nominal		
Adjacent channel power	Adjacent	Alternate	
Accuracy, W-CDMA (ACLR)	•		
(at specific mixer levels and ACLR ranges)			
- MS	± 0.14 dB	± 0.18 dB	
- BTS	± 0.49 dB	± 0.42 dB	
Dynamic range (typical)			
 Without noise correction 	–73 dB	-79 dB	
 With noise correction 	–78 dB	-82 dB	
Offset channel pairs measured	1 to 6		
ACP measurement and transfer time	10 ms, nominal (σ = 0.2 dB)		
(fast method)			
Multiple number of carriers measured	Up to 12		
Power statistics CCDF			
Histogram resolution	0.01 dB		
Harmonic distortion			
Maximum harmonic number	10th		
Result	Fundamental power (dBm), relative harmonics power (dBc), total harmonic distortion in %		
Intermod (TOI)	Measure the third-order produc	ts and intercepts from two tones	
Burst power			
Methods	Power above threshold, power v		
Results	Single burst output power, aver- burst width	age output power, maximum power, minimum power within burst,	
Spurious emission			
W-CDMA (1 to 3.6 GHz) table-driven spurious si	gnals; search across regions		
 Dynamic range 	81.3 dB	(82.2 dB, typical)	
 Absolute sensitivity 	-84.5 dBm	(-89.5 dBm, typical)	
Spectrum emission mask (SEM)			
cdma2000® (750 kHz offset)			
 Relative dynamic range (30 kHz RBW) 	78.6 dB	(84.8 dB, typical)	
 Absolute sensitivity 	-99.7 dBm	(-104.7 dBm, typical)	
 Relative accuracy 	± 0.12 dB		
3GPP W-CDMA (2.515 MHz offset)			
	01 0 40	(88.1 dB, typical)	
 Relative dynamic range (30 kHz RBW) 	81.9 dB		
Relative dynamic range (30 kHz RBW)Absolute sensitivityRelative accuracy	-99.7 dBm	(-104.7 dBm, typical)	

General Specifications

Temperature range		
Operating	0 to 55 °C	
Storage	−40 to 70 °C	
EMC		

Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR 11 Group 1, Class A
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001

Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 2006/95EC

- IEC/EN 61010-1 3rd Edition
- Canada: CSA C22.2 No. 61010-1-12
- U.S.A.: UL 61010-1 3rd Edition

Acoustic statement (European Machinery Directive 2002/42/EC, 1.7.4.2u)

- Acoustic noise emission
- LpA < 70 dB
- Operator position
- Normal position
- Per ISO 7779

Environmental stress

Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions: test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements		
Voltage and frequency	100/120 V, 50/60/400 Hz 220/240 V, 50/60 Hz	The instruments can operate with mains supply voltage fluctuations up to \pm 10% of the nominal voltage
Power consumption		
- On	465 W maximum	
Standby	20 W	
Display		
Resolution	1280 x 768	
Size	269 mm (10.6 in.) diagonal (nominal) ca	pacitive multi-touch screen
Data storage		
Internal	≥ 160 GB nominal (removable solid stat	e drive)
External	Supports USB 2.0 or 3.0 compatible m	emory devices
Weight (without options)		
Net		
RF/MW (Option 503, 508, 513, 526)	18 kg (40 lbs), nominal	
- Millimeter-Wave (Option 532, 544, 550)	20 kg (44 lbs), nominal	
Shipping		
RF/MW (Option 503, 508, 513, 526)	30 kg (66 lbs), nominal	
- Millimeter-Wave (Option 532, 544, 550)	32 kg (71 lbs), nominal	
Dimensions		
Height	177 mm (7.0 in)	
Width	426 mm (16.8 in)	
Length	368 mm (14.5 in)	
Calibration cycle		
The recommended calibration cycle is two years	; calibration services are available through	Keysight service centers

Inputs and Outputs

Front panel		
RF input connector		
- Standard (Option 503, 508, 513, 526)	Type-N female, 50 Ω nominal	
- Standard (Option 532, 544, 550)	2.4 mm male, 50Ω nominal	
External Mixing (Option EXM)	2.1.11111111111111111111111111111111111	
- Connection port		
- Connector	SMA, female	
Impedance	50 Ω, nominal	
- Functions	Triplexed for LO output, IF input, and mixer bias	
 Mixer bias range 	± 10 mA in 10 µA step	
IF input center frequency	= 10 mm 10 pr 1000p	
Narrowband IF path	322.5 MHz	
- 40 MHz BW IF path	250.0 MHz	
- 85, 125, or 160 MHz BW IF path	300 MHz	
 LO output frequency range 	3.75 to 14.0 GHz	
Analog baseband IQ inputs (Option BBA) 1	0.70 to 14.0 aliz	
- Connectors (I, Q, I-Bar, Q-Bar, and Cal Out)	BNC female	
- Cal Out	DING Terridite	
- Signal	AC coupled square wave	
Frequency	Selectable between 1 kHz and 250 kHz	
Included and a local propertiesInput impedance (4 connectors: I, Q, I-, Q-)	50 Ω , 1 M Ω (selectable, nominal)	
 Probes supported ² 	30 sz, 1 Msz (Selectable, Hoffiliat)	
Active probe	1130A, 1131A, 1132A, 1134A	
Passive probe	1161A	
- Input return loss	-35 dB (0 to 10 MHz, nominal)	
 50 Ω impedance only selected 	-30 dB (10 to 40 MHz, nominal)	
Probe power	50 dB (10 to 40 MHz, 110111111at)	
- Voltage/current	+15 Vdc, ±7 % at 150 mA max, nominal	
voltago, our one	-12.6 Vdc, ±10 % at 150 mA max, nominal	
USB ports		
- Host (3 ports)		
 Standard 	Compatible with USB 2.0	
Connector	USB type-A female	
 Output current 		
 Port marked with lightning bolt 	1.2 A (nominal)	
 Ports not marked with lightning bolt 	0.5 A (nominal)	
Rear panel		
10 MHz out		
Connector	BNC female, 50Ω , nominal	
 Output amplitude 	≥ 0 dBm, nominal	
Frequency	10 MHz ± (10 MHz x frequency reference accuracy)	
Ext Ref In		
Connector	BNC female, 50Ω , nominal	
 Input amplitude range 	-5 to 10 dBm, nominal	
 Input frequency 	1 to 50 MHz, nominal	
 Frequency lock range 	± 2 x 10 ⁻⁶ of specified external reference input frequency	
Trigger 1 and 2 inputs		
- Connector	BNC female	
- Impedance	> 10 kΩ, nominal	
- Trigger level range	-5 to 5 V	

Page 15 Find us at www.keysight.com

For additional specifications, please refer to the MXA specifications guide.
 For more details, please refer to the Keysight Probe Configuration Guides, literature numbers 5968-7141EN and 5989-6162EN; probe heads are necessary to attach to your device properly and probe connectivity kits such as E2668B, E2669A. or E2675A are required.

Inputs and Outputs (continued)

Rear panel	
Trigger 1 and 2 outputs	
- Connector	BNC female
- Impedance	50 Ω , nominal
- Level	5 V TTL, nominal
Monitor output	
- Connector	VGA compatible, 15-pin mini D-SUB
- Format	XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
- Resolution	1024 x 768
Noise source drive +28 V (pulsed)	1024 x 7 00
- Connector	BNC female
	DNC lettiale
SNS Series noise source	
Analog out	DU0(1 (1 11 100004 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- Connector	BNC female (used with N9063A analog demod app and Option YAS)
USB ports	
- Host, super speed	2 ports
 Compatibility 	USB 3.0
Connector	USB Type A (female)
 Output current 	0.9 A, nominal
 Host, stacked with LAN 	1 port
 Compatibility 	USB 2.0
- Connector	USB Type A (female)
 Output current 	0.5 A, nominal
- Device	1 port
 Compatibility 	USB 3.0
Connector	USB type-B (female)
 Output current 	0.9 A, nominal
GPIB interface	
Connector	IEEE-488 bus connector
- GPIB codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
- GPIB mode	Controller or device
LAN TCP/IP interface	
- Standard	1000 Base-T
- Connector	RJ45 Ethertwist
IF output	
- Connector	SMA female, shared by Option CR3 and CRP
- Impedance	50 Ω, nominal
	50 Ω, ποιτιπατ
Wideband IF output, Option CR3	
Center frequency	
 SA mode or I/Q analyzer 	
with IF BW ≤ 25 MHz	322.5 MHz
- with Option B40	250 MHz
with Option B85, B1A, or B1X	300 MHz
Conversion gain	–1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
 Low band 	Up to 140 MHz (nominal)
 High band, with preselector 	Depends on center frequency
 High band, with preselector bypassed ¹ 	Up to 410 MHz
Programmable IF output, Option CRP	
Center frequency	
- Range	10 to 75 MHz (user selectable)
- Resolution	0.5 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
	-1 to +4 up (nonlinal) plus at hequeincy response
Bandwidth	1001111 / 11
- Output at 70 MHz	100 MHz (nominal)
 Low band or high band with preselector bypassed ¹ 	Depends on RF center frequency
 Preselected band 	
Preselected dand Lower output frequencies	Subject to folding ≤ -88 dBm (nominal)

I/Q Analyzer

RMS (nominal)
0.04 dB
0.25 dB
0.35 dB
0.04 dB
RMS
0.1 °
0.2 °
0.1 °
RMS (nominal)
0.051 dB
0.45 dB
0.05 dB
U.UU UD
0.00 00
RMS

^{1.} Option MPB is installed and enabled.

I/Q Analyzer (continued)

Data acquisition (25 MHz IF path)			
Time record length (IQ pairs)			
IQ Analyzer	4,000,000 IQ sample	pairs	
89600 software	32-bit packing	64-bit packing	Memory
Option DP2, B40 or MPB	536 MSa	268 MSa	2 GB
None of the above	4,000,000 IQ sample	pairs (independent of data packing)	
Sample rate at ADC			
 Option DP2, B40 or MPB 	100 MSa/s		
 None of the above 	90 MSa/s		
ADC resolution			
 Option DP2, B40 or MPB 	16 bits		
 None of the above 	14 bits		

I/Q Analyzer - Option B40

40 MHz analysis bandwidth, Option B40 is automatically included in Option B85, B1A or B1X

Option B40 40 MHz analysis bandwidth				
IF frequency response (demodulation and FI		, ,	30 °C)	
Center frequency (GHz)	Span (MHz)	Preselector		RMS (nominal)
$0.03 \le f < 3.6$	≤ 40	NA	± 0.45 dB	± 0.08 dB
$3.6 \le f \le 8.4$	≤ 40	Off ¹	± 0.35 dB	± 0.08 dB
8.4 < f ≤ 26.5	≤ 40	Off 1	± 0.46 dB	± 0.08 dB
26.5 < f ≤ 34.4	≤ 40	Off ¹	±0.67 dB	± 0.1 dB
34.4 < f ≤ 50	≤ 40	Off ¹	±0.71 dB	± 0.1 dB
IF phase linearity (deviation from mean phase	se linearity, nominal)			
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
0.02 ≤ f < 3.6	40	NA	0.4°	0.1°
≥3.6	40	Off ¹	6°	1.8°
Dynamic range (40 MHz IF path)				
SFDR (Spurious-free dynamic range)				
 Signal frequency within ± 12 MHz of 	-77 dBc, nominal			
center				
Signal frequency anywhere within analysis E	3W			
- Spurious response within ± 18 MHz of	-74 dBc, nominal			
center				
- Response anywhere within analysis	-74 dBc, nominal			
BW				
Data acquisition (40 MHz IF path)				
Time record length (IQ pairs)				
- IQ Analyzer	4,000,000 samples (I/	'Q pairs)		
89600 VSA software	32-bit packing	64-bit packing		
Length (IQ sample pairs)	536 MSa	268 MSa	2 GB total memory, r	nominal
Length (time units)			Samples/(Span x 1.2	
Sample rate				
– At ADC	200 Msa/s			
- IQ pairs			Span x 1.25, nominal	
ADC resolution	12 bits		,	

^{1.} Option MPB is installed and enabled.

I/Q Analyzer — Option B85/B1A/B1X

85/125/160 MHz analysis bandwidth

frequency response (20 to 30 °C)			Relative to center fre	equency	
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
≥ 0.15, < 3.6	<u>≤</u> 85	NA	± 0.6 dB	± 0.17 dB	0.05 dB
	≤ 140	NA	± 0.6 dB	± 0.25 dB	0.05 dB
	≤ 160	NA		± 0.2 dB, nominal	0.07 dB
≥ 3.6, ≤ 8.4	≤ 85	Off 1	± 0.73 dB	± 0.2 dB	0.06 dB
,	≤ 140	Off 1	± 0.8 dB	± 0.35 dB	0.06 dB
	≤ 160	Off 1		± 0.3 dB, nominal	0.07 dB
> 8.4, ≤ 26.5	≤ 85	Off 1	± 1.10 dB	± 0.50 dB	0.2 dB
	≤ 140	Off 1	± 1.40 dB	± 0.76 dB	0.2 dB
	≤ 160	Off 1		± 0.5 dB, nominal	0.12 dB
> 26.5, ≤ 50	≤ 85	Off 1	± 1.20 dB	± 0.45 dB	0.12 dB
> 26.5, ≤ 50	≤ 140	Off 1	± 1.40 dB	± 0.65 dB	0.12 dB
> 26.5, ≤ 50	≤ 160	Off 1		± 0.65 dB, nominal	0.12 dB
IF phase linearity (deviation from mean pha	se linearity, nomina	1)		· · · · · · · · · · · · · · · · · · ·	
Center freq. (GHz)	Span (MHz)	Preselector		Peak-to-peak	RMS
≥ 0.03, < 3.6	≤ 85	NA		1.6°	0.54°
	≤ 140	NA		3.9°	0.85°
	≤ 160	NA		4.7°	1.23°
≥ 3.6	≤ 85	Off 1		4.2°	0.93°
	≤ 160	Off 1		5.3°	1.73°
EVM (EVM measurement floor)	Customized settir	ngs required, presele	ctor bypassed (Option I	MPB) is installed and enable	ed
Case 1: 802.11ac OFDM signal, 80 MHz ban	dwidth, MCS8, usin	g 89600 VSA softwa	re equalization on, pilot	t phase tracking post EQ or	1
Carrier frequency, 5.21 GHz; input power,	0.23% (-52.7 dB),	nominal		(EQ on preamble, pil	ots, and data)
0 dBm	0.35% (-49.1 dB),	nominal		(EQ on preamble onl	y)
Case 2: 802.11ac OFDM signal, 160 MHz ba	ndwidth, MCS8, usi	ng 89600 VSA softw	are equalization on, pil	ot phase tracking post EQ o	n
Carrier frequency, 5.25 GHz; input power,	0.30% (-50.4 dB)	, nominal		(EQ on preamble, pil	ots, and data)
0 dBm	0.40% (–47.9 dB), nominal		(EQ on preamble onl	y)	
Dynamic range				·	
SFDR (Spurious-free dynamic range)					
Signal frequency within ± 12 MHz of centerSignal frequency anywhere within	-72 dBc, nominal				
analysis BW - Spurious response within ± 63 MHz of center	-71 dBc, nominal				
 Response anywhere within analysis BW 	-69 dBc, nominal				
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low	IF gain offset = 0 d	B)			
- Band 0	-8 dBm mixer lev	el, nominal			
Band 1 through 4	-7 dBm mixer leve	el, nominal			
High gain setting, signal at CF (IF gain = Hig	h)				
- Band 0		vel nominal, subject t	o gain limitations		
Band 1 through 4	–17 dBm mixer lev	vel nominal, subject t	to gain limitations		

^{1.} Option MPB is installed and enabled.

I/Q Analyzer - Option B85/B1A/B1X (continued)

85/125/160 MHz analysis bandwidth

Data acquisition (85/125/160 MHz IF p Time record length	ath)			
- IQ analyzer	4,000,000 IQ sample pairs	S		
- 89600 VSA software	Data packing	Data packing		
- 89000 VSA SUITWATE	32-bit	64-bit		
- Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memory	
- Length (time units)	Samples/(span x 1.25)			
Sample rate				
- At ADC	400 Msa/s			
IQ pairs	Span dependent			
ADC resolution	14 bits			

Real-Time Spectrum Analyzer (RTSA) ¹

Option RT1 or RT2

Real-time analysis		
Real-time analysis bandwidth		
Option RT1	Up to 160 MHz	Analysis BW option determines the max real-time bandwidth
Option RT2	Up to 160 MHz	Analysis BW option determines the max real-time bandwidth
Minimum detectable signal duration	with > 60 dB StM ² ratio	
Option RT1	11.42 ns	
Option RT2	5.0 ns	
Minimum signal duration with 100%	probability of Frequency Mask Tri	ggering (FMT) at full amplitude accuracy
Option RT1	17.3 μs	Signal is at mask level
Option RT2	3.57 μs	Signal is at mask level
Minimum acquisition time	100 μs	
FFT rate	292,969/s	
Supported triggers	Level, Level with time q	ualified (TQT), Line, External, RF burst, Frame, Frequency mask (FMT), FMT with TQT

For additional RTSA specifications, please refer to Option RT1/RT2 Chapter in the MXA Signal Analyzer specifications guide (part number: N9020-90113)
 StM = "Signal-to-Mask"

Related Literature

Publication title	Publication number
X-Series Signal Analyzers - Brochure	5992-1316EN
N9020B MXA X-Series Signal Analyzer – Configuration Guide	5992-1254EN

For more information or literature resources please visit the web:

Product page: www.keysight.com/find/N9020B

X-Series measurement applications: www.keysight.com/find/X-Series_Apps

X-Series signal analyzers: www.keysight.com/find/X-Series

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

